Gravitation Question 368

Question: A system consists of two stars of equal masses that revolve in a circular orbit about a centre of mass midway between them. Orbital speed of each star is v and period is T. Find the mass M of each star (G is gravitational constant)

Options:

A) $ [\frac{2Gv^{3}}{\pi T}] $

B) $ [\frac{v^{3}T}{\pi G}] $

C) $ [\frac{v^{3}T}{2\pi G}] $

D) $ [\frac{2Tv^{3}}{\pi G}] $

Show Answer

Answer:

Correct Answer: D

Solution:

  • $ [\frac{Mv^{2}}{R}=\frac{GM^{2}}{4R^{2}}\Rightarrow M=\frac{4Rv^{2}}{G}] $

    $ [v=\frac{2\pi R}{T},,,,,,,,,,,,R=\frac{vT}{2\pi },,,M=\frac{v^{3}T2}{\pi G}] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें