Gravitation Question 216

Question: A rubber of volume 2000 cc is alternately subjected to tension and released. The The stress-strain curve of rubber. Each curve is a quadrant of an ellipse. The. amount of energy lost as heat per cycle per unit volume will be

Options:

A)$ [\left( \frac{\pi }{2}-1 \right)\times 16\times 10^{2}J] $

B) $ [\left( \frac{\pi }{4}-1 \right)\times 8\times 10^{2}J] $

C)$ [\left( \frac{\pi }{4}-1 \right)\times 32\times 10^{2}J] $

D)$ [\left( \frac{\pi }{2}-1 \right)\times 32\times 10^{2}J] $

Show Answer

Answer:

Correct Answer: D

Solution:

  • Hystersis loss corresponding to elasticity per unit volume of a substance is given by the area of hysteresis loop, i.e., stress-strain curve corresponding to one complete loading and deloading. Area of an ellipse = $ [\pi \times ] $ semi-major axis x semi-minor axis

    $ [A_{1}=\frac{1}{4}(\pi \times 8\times 4\times 10^{2})] $ And$ [A_{2}=\frac{1}{4}(\pi \times 8\times 4\times 10^{2})] $

    Also, $ [A_{3}=8\times 4\times 10^{2}] $ Area of hysteresis loop is $ [A=A_{1}+A_{2}-A_{3}] $

    $ [A=2\left[ \frac{\pi }{4}\times 8\times 4\times 10^{2} \right]-[8\times 4\times 10^{2}]] $

    $ [=\left[ \frac{\pi }{2}-1 \right]\times 32\times 10^{2}J] $ = work done per cycle = energy lost per cycle per unit volume



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें