Gravitation Question 228

Question: Four particles, each of mass $ [M] $ and equidistant from each other, move along a circle of radius $ [R] $ under the action of their mutual gravitational attraction. The speed of each particle is

Options:

A) $ [\sqrt{\frac{GM}{R}(1+2\sqrt{2})}] $

B) $ [\frac{1}{2}\sqrt{\frac{GM}{R}(1+2\sqrt{2})}] $

C) $ [\sqrt{\frac{GM}{R}}] $

D) $ [\sqrt{2\sqrt{2}\frac{GM}{R}}] $

Show Answer

Answer:

Correct Answer: B

Solution:

  • Net force on any one particle $ [=\frac{GM^{2}}{{{(2R)}^{2}}}+\frac{GM^{2}}{{{(R\sqrt{2})}^{2}}}\cos 45{}^\circ +\frac{GM^{2}}{{{(R\sqrt{2})}^{2}}}\cos 45{}^\circ ] $ $ [=\frac{GM^{2}}{R^{2}}\left[ \frac{1}{4}+\frac{1}{\sqrt{{}}} \right]] $ This force will be equal to centripetal force so $ [\frac{Mu^{2}}{R}=\frac{GM^{2}}{R^{2}}\left[ \frac{1+2\sqrt{2}}{4} \right]] $ $ [u=\sqrt{\frac{GM}{R}[1+2\sqrt{2}]}] $ $ [=\frac{1}{2}\sqrt{\frac{GM}{R}(2\sqrt{2}+1)}] $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें