Gravitation Question 230

Question: Two bodies of masses $ [M_{1}] $ and $ [M_{2}] $ are placed at a distance $ [R] $ apart. Then at the position where the gravitational field due to them is zero, the gravitational potential is

Options:

A) $ [-G\frac{\sqrt{M_{1}}}{R}] $

B) $ [-G\frac{\sqrt{M_{2}}}{R}] $

C) $ [-{{(\sqrt{M_{1}}+\sqrt{M_{2}})}^{2}}\frac{G}{R}] $

D) $ [-{{(\sqrt{M_{1}}-\sqrt{M_{2}})}^{2}}\frac{G}{R}] $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ [\frac{GM_{1}}{x^{2}}=\frac{GM_{2}}{{{(R-x)}^{2}}}] $ or $ [\frac{M_{2}}{M_{1}}x^{2}=R^{2}+x^{2}-2Rx] $ Let $ [\frac{M_{2}}{M}=k] $ $ [x^{2}(k-1)+2Rx-R^{2}=0] $ $ [x=-\frac{2R+\sqrt{4R^{2}+4(k-1)R^{2}}}{2(k-1)}=\frac{R\sqrt{M_{1}}}{\sqrt{M_{1}}+\sqrt{M_{2}}}] $ $ [R-x=\frac{R\sqrt{M_{2}}}{\sqrt{M_{1}}+\sqrt{M_{2}}}] $ Gravitational potential at point P is $ [-\left( \frac{GM_{1}}{x}+\frac{GM_{2}}{R-x} \right)] $ $ [=-\left[ \frac{GM_{1}(\sqrt{M_{1}}+\sqrt{M_{2}})}{R\sqrt{M_{1}}}+\frac{GM_{2}(\sqrt{M_{1}}+\sqrt{M_{2}})}{R\sqrt{M_{2}}} \right]] $ $ [=-\left[ \frac{G(\sqrt{M_{2}}+\sqrt{M_{1}})}{R}(\sqrt{M_{1}}+\sqrt{M_{2}}) \right]] $ $ [=-\frac{G{{(\sqrt{M_{1}}+\sqrt{M_{2}})}^{2}}}{R}] $


sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें