Gravitation Question 253

Question: In the following four periods[AMU 2000] Time of revolution of a satellite just above the earth’s surface $ [(T_{st})] $ Period of oscillation of mass inside the tunnel bored along the diameter of the earth $ [(T_{ma})] $ Period of simple pendulum having a length equal to the earth’s radius in a uniform field of 9.8 N/kg $ [(T_{sp})] $ Period of an infinite length simple pendulum in the earth’s real gravitational field $ [(T_{is})] $

Options:

A) $ [T_{st}>T_{ma}] $

B) $ [T_{ma}>T_{st}] $

C) $ [T_{sp}<T_{is}] $

D) $ [T_{st}=T_{ma}=T_{sp}=T_{is}] $

Show Answer

Answer:

Correct Answer: C

Solution:

(i)$ [T_{st}=2\pi \sqrt{\frac{{{(R+h)}^{3}}}{GM}}] $

$ [=2\pi \sqrt{\frac{R}{g}}] $ [As h «R and $ [GM=gR^{2}]] $

(ii) $ [T_{ma}=2\pi \sqrt{\frac{R}{g}}] $

(iii) $ [T_{sp}=2\pi \sqrt{\frac{1}{g\left( \frac{1}{l}+\frac{1}{R} \right)}}=2\pi \sqrt{\frac{R}{2g}}] $ [As l = R] (iv) $ [T_{is}=2\pi \sqrt{\frac{R}{g}}] $

$ [[As,,l=\infty ]] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें