Kinematics Question 362

Question: A car accelerates from rest at a constant rate $ \alpha $ for some time, after which it decelerates at a constant rate $ \beta $ and comes to rest. If the total time elapsed it’s t, then the maximum velocity acquired by the car it’s

Options:

A) $ ( \frac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta } )t $

B) $ ( \frac{{{\alpha }^{2}}-{{\beta }^{2}}}{\alpha \beta } ) $

C) $ \frac{( {{\alpha }^{{}}}+{{\beta }^{{}}} )t}{\alpha \beta } $

D) $ \frac{\alpha \beta t}{{{\alpha }^{{}}}+{{\beta }^{{}}}} $

Show Answer

Answer:

Correct Answer: D

Solution:

In fig., $ A\text{.}{A _{1}}\text{=}{v _{max\text{.}}}$

=$\alpha {t_1}$=$\beta {t_2} $

$ \text{But t=}{t _{1}}+{t _{2}}=\frac{{V _{\max }}}{\alpha }+\frac{{V _{\max }}}{\beta } $

$ ={v _{\max }}( \frac{1}{\alpha }+\frac{1}{\beta } )={v _{\max }}( \frac{\alpha +\beta }{\alpha \beta } ) $

$ or,{{v} _{\max }}=t( \frac{\alpha \beta }{\alpha +\beta } ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें