Kinematics Question 375

Question: The acceleration of a particle, starting from rest, varies with time according to the relation $ a=-s{{\omega }^{2}}\sin \omega t $ . The displacement of this particle at a time t will be

Options:

A) $ \text{s sin }\omega \text{ t} $

B) $ \text{s }\omega \text{ cos }\omega \text{ t} $

C) $ \text{s }\omega \text{ sin}\omega t $

D) $ -\frac{1}{2}( s{{\omega }^{2}}\text{ sin }\omega t ){{t}^{2}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ a=\frac{d^{2}x}{dt^{2}}=-s\omega \sin \omega t. $

On integrating, $ \frac{dx}{dt}=s{{\omega }^{2}}\frac{\cos \omega t}{\omega }=s\sin \omega t $

Again on integrating, we get $ x=s\omega \frac{\sin \omega t}{\omega }=s\sin \omega t $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें