Kinematics Question 380

Question: A car accelerates from rest with a constant acceleration $ \alpha $ on a straight road. After gaining a velocity $ v _{1} $ , the car moves with the same velocity for some-time. Then the car decelerated to rest with a retardation $ \beta $ . If the total distance covered by the car is equal to S, the total time taken for it’s motion is

Options:

A) $ \frac{S}{v}+\frac{v}{2}( \frac{1}{\alpha }+\frac{1}{\beta } ) $

B) $ \frac{S}{v}+\frac{v}{\alpha }+\frac{v}{\beta } $

C) $ ( \frac{v}{\alpha }+\frac{v}{\beta } ) $

D) $ \frac{S}{v}-\frac{v}{2}( \frac{v}{\alpha }+\frac{1}{\beta } ) $

Show Answer

Answer:

Correct Answer: A

Solution:

From v = u + at, we have $ v=0+\alpha {{t} _{1}}\Rightarrow \frac{v}{\alpha } $

$ 0=v-\beta t _{3}\Rightarrow t _{3}=\frac{v}{\beta }. $

$ \text{Now, S =}\frac{1}{2}v{{t} _{1}}\text{+v}{{t} _{2}}+\frac{1}{2}v{{t} _{3}}=\frac{{{v}^{2}}}{2\alpha }+v{{t} _{2}}+\frac{{{v}^{2}}}{2\beta } $
$ \Rightarrow {{t} _{2}}\text{=}\frac{S}{v}-\frac{v}{2}( \frac{1}{\alpha }+\frac{1}{\beta } ). $

$ \text{Hence, }{{t} _{1}}\text{+}{{t} _{2}}\text{+}{{t} _{3}}\text{=}\frac{S}{v}\text{+}\frac{v}{2}( \frac{1}{\alpha }+\frac{1}{\beta } ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें