Kinematics Question 4

Question: If the sum of two unit vectors its a unit vector, then magnitude of difference it’s [CPMT 1995; CBSE PMT 1989]

Options:

A) $ \sqrt{2} $

B) $ \sqrt{3} $

C) $ 1/\sqrt{2} $

D) $ \sqrt{5} $

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ {{\hat{n}}_1} $ and $ {{\hat{n}}_2} $ are the two unit vectors, then the suM is

$ {{\overrightarrow{n}} _{s}}={{\hat{n}}_1}+{{\hat{n}}_2} $ or $ n_s^{2}=n_1^{2}+n_2^{2}+2n_1n_2\cos \theta $

$ =1+1+2\cos \theta $

Since it’s given that $ n _{s} $ it’s also a unit vector,

therefore $ 1=1+1+2\cos \theta $

therefore $ \cos \theta =-\frac{1}{2} $ $ \theta =120{}^\circ $

Now the difference vector is $ {{\hat{n}} _{d}}={{\hat{n}}_1}-{{\hat{n}}_2} $ or $ n_d^{2}=n_1^{2}+n_2^{2}-2n_1n_2\cos \theta $

$ =1+1-2\cos (120{}^\circ ) $

$ n_d^{2}=2-2(-1/2)=2+1=3 $

$ \Rightarrow n _{d}=\sqrt{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें