Kinematics Question 403

Question: Let A, B, C, D be points on a vertical line such that AB = BC = CD. If a body is released from position A, the times of descent through AB, BC and CD are in the ratio.

Options:

A) $ 1:\sqrt{3}-\sqrt{2}:\sqrt{3}+\sqrt{2} $

B) $ 1:\sqrt{2}-1:\sqrt{3}-\sqrt{2} $

C) $ 1:\sqrt{2}-1:\sqrt{3} $

D) $ 1:\sqrt{2}:\sqrt{3}-1 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \text{S=AB=}\frac{1}{2}g{{t} _{1}}^{2} $
$ \Rightarrow \text{2S=AC=}\frac{1}{2}g{{( {{t} _{1}}\text{+}{{t} _{2}} )}^{2}} $

$ \text{and 3S = AD = }\frac{1}{2}G{{( {{t} _{1}}\text{+}{{t} _{2}}+t _{3} )}^{2}} $

$ t _{1}=\sqrt{\frac{2S}{g}} $

$ {{t} _{1}}\text{+}{{t} _{2}}=\sqrt{\frac{4S}{g}},t _{2}=\sqrt{\frac{4S}{g}}-\sqrt{\frac{2S}{g}} $

$ {{t} _{1}}\text{+}{{t} _{2}}+t _{3}=\sqrt{\frac{6S}{g}},t _{3}=\sqrt{\frac{6S}{g}}-\sqrt{\frac{4S}{g}} $

$ {{t} _{1}}\text{:}{{t} _{2}}\text{:}{{t} _{3}}::1:( \sqrt{2}-\sqrt{1} ):( \sqrt{3}-\sqrt{2} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें