Kinematics Question 488

Question: A stone of mass 1 kg tied to a light inextensible string of length $ L=\frac{10}{3}m $ it’s whirling in a circular path of radius $ L $ in a vertical plane. If the ratio of the maximum tension in the string to the minimum tension in the string is 4 and if $ g $ it’s taken to be $ 10m/{{\sec }^{2}} $ , the speed of the stone at the highest point of the circle it’s [CBSE PMT 1990]

Options:

A) $ 20m/\sec $

B) $ 10\sqrt{3}m/\sec $

C) $ 5\sqrt{2}m/\sec $

D) $ 10m/\sec $

Show Answer

Answer:

Correct Answer: D

Solution:

Since the maximum tension $ T _{B} $ in the string moving in the vertical circle is at the bottom and minimum tension $ T _{T} $ is at the top.

$ T _{B}=\frac{mv _{B}^{2}}{L}+mg $ and $ T _{T}=\frac{mv _{T}^{2}}{L}-mg $

$ \frac{T _{B}}{T _{T}}=\frac{\frac{mv _{B}^{2}}{L}+mg}{\frac{mv _{T}^{2}}{L}-mg}=\frac{4}{1} $ or $ \frac{v _{B}^{2}+gL}{v _{T}^{2}-gL}=\frac{4}{1} $ or $ v _{B}^{2}+gL=4v _{T}^{2}-4gL $

but $ v _{B}^{2}=v _{T}^{2}+4gL $

$ v _{T}^{2}+4gL+gL=4v _{T}^{2}-4gL $

therefore $ 3v _{T}^{2}=9gL $

$ v _{T}^{2}=3\times g\times L=3\times 10\times \frac{10}{3} $

or $ v _{T}=10m/\sec $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें