Kinematics Question 494

Question: The coordinates of a particle moving in a plane are given by $ =-\ 8\ m/s^{2}. $ and $ y(t)=b\sin (pt) $ where $ a,b(<a) $ and $ p $ are positive constants of appropriate dimensions. Then[IIT-JEE 1999]

Options:

A) The path of the particle is an ellipse

B) The velocity and acceleration of the particle are normal to each other at $ t=\pi /(2p) $

C) The acceleration of the particle is always directed towards a focus

D) The distance travelled by the particle in time interval $ t=0 $ to $ t=\pi /(2p) $ it’s $ a $

Show Answer

Answer:

Correct Answer: A

Solution:

$ x=a\cos (pt) $ and $ y=b\sin (pt) $ (given) $ \therefore $ $ \cos pt=\frac{x}{a} $ and $ \sin pt=\frac{y}{b} $

By squaring and adding $ {{\cos }^{2}}(pt)+{{\sin }^{2}}(pt)=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $

Hence path of the particle is ellipse.

Now differentiating x and y w.r.t. time $ v _{x}=\frac{dx}{dt}=\frac{d}{dt}(a\cos (pt))=-ap\sin (pt) $

$ v _{y}=\frac{dy}{dt}=\frac{d}{dt}(b\sin (pt))=bp\cos (pt) $

$ \therefore \ \ \vec{v}=v _{x}\hat{i}+v _{y}\hat{j}=-ap\sin (pt)\hat{i}+bp\cos (pt)\hat{j} $

Acceleration

$ \vec{a}=\frac{d\vec{v}}{dt}=\frac{d}{dt}[-ap\sin (pt)\hat{i}+bp\cos (pt)\hat{j}] $

$ \vec{a}=-ap^{2}\cos (pt)\ \hat{i}-bp^{2}\sin (pt)\hat{j} $ Velocity at $ t=\frac{\pi }{2p} $

$ \vec{v}=-ap\sin p( \frac{\pi }{2p} )\ \hat{i}+bp\cos p( \frac{\pi }{2p} )\hat{j} $

$ =-ap\ \hat{i} $ Acceleration at $ t=\frac{\pi }{2p} $

$ \vec{a}=ap^{2}\cos p( \frac{\pi }{2p} )\ \hat{i}-bp^{2}\sin p( \frac{\pi }{2p} )\hat{j} $

$ =-bp^{2}\hat{j} $ As $ \vec{v}\ .\ \vec{a}=0 $ Hence velocity and acceleration are perpendicular to each other at $ t=\frac{\pi }{2p} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें