Kinematics Question 515

Question: A ship A sailing due east with a velocity of 10 km/h happens to appear sailing due north with a velocity of 5 km/h, to a person, sitting in a moving ship $ B $ . Determine the velocity (absolute) of ship $ B $ .

Options:

A)$ 5\sqrt{5}km/h,ta{{n}^{-1}}(1/2)SofE $

B)$ 5\sqrt{5}km/h,ta{{n}^{-1}}(1/2)EofS $

C) $ 4\sqrt{5}km/h,ta{{n}^{-1}}(1/2)SofE $

D) $ 4\sqrt{5}km/h,ta{{n}^{-1}}(1/2)EofS $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Here we are given velocity of ‘A’, $ {{\vec{v}} _{A}}=10\hat{i} $

Velocity of ‘A’, w.r.t. ‘B’, $ {{\vec{v}} _{A/B}}=5j $

Now $ {{\vec{v}} _{A/B}}={{\vec{v}} _{A}}-{{\vec{v}} _{B}} $

$ 5\hat{j}=10\hat{i}-{{\vec{v}} _{B}}\Rightarrow {{\vec{v}} _{B}}=10\hat{i}-5\hat{j} $

Hence velocity of B, $ v _{B}=\sqrt{10^{2}+5^{2}}=5\sqrt{5}km/h $

$ \tan \theta =\frac{5}{10}=\frac{1}{2} $

$ \theta ={{\tan }^{-1}}( \frac{1}{2} )s $ of E



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें