Kinematics Question 148

Question: With respect to a rectangular cartesian coordinate system, three vectors are expressed as $ \vec{a}=4\hat{i}-\hat{j} $ , $ \vec{b}=-3\hat{i}+2\hat{j} $ and $ \vec{c}=-\hat{k} $ where $ \hat{i},\hat{j},\hat{k} $ are unit vectors, along the X, Y and Z-axis respectively. The unit vectors $ \hat{r} $ along the direction of sum of these vector is [Kerala CET (Engg.) 2003]

Options:

A) $ \hat{r}=\frac{1}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k}) $

B) $ \hat{r}=\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}-\hat{k}) $

C) $ \hat{r}=\frac{1}{3}(\hat{i}-\hat{j}+\hat{k}) $

D) $ \hat{r}=\frac{1}{\sqrt{2}}(\hat{i}+\hat{j}+\hat{k}) $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \vec{r}=\vec{a}+\vec{b}+\vec{c} $

$ =4\hat{i}-\hat{j}-3\hat{i}+2\hat{j}-\hat{k} $

$ =\hat{i}+\hat{j}-\hat{k} $

$ \hat{r}=\frac{{\vec{r}}}{|r|}=\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{1^{2}+1^{2}+{{(-1)}^{2}}}}=\frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें