Kinematics Question 631

A cricket ball thrown across a field is at heights $ h _{1}, $ and $ h _{2} $ from point of projection at times $ t _{1} $ and $ t _{2} $ respectively after the throw. The ball is caught by a fielder at the same height as that of projection. The time of flight of the ball in this journey is

Options:

A) $ \frac{h _{1}t _{2}^{2}-h _{2}t _{1}^{2}}{h _{1}t _{2}-h _{2}t _{1}} $

B)$ \frac{h _{1}t _{2}^{2}+h _{2}t _{1}^{2}}{h _{1}t _{2}+h _{2}t _{1}} $

C) $ \frac{h _{1}t _{2}}{h _{1}t _{2}-h _{2}t _{1}} $

D) None

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ {{\text{h}} _{\text{1}}}\text{=}\text{u sin}\theta {{\text{t}} _{\text{1}}}\text{+}\frac{\text{1}}{\text{2}}\text{gt} _{\text{1}}^{\text{2}}; $

$ {{h _{2}}}\text{=}\text{u sin}\theta {{t _{2}}}\text{+}\frac{\text{1}}{\text{2}}\text{gt} _{2}^{\text{2}} $

$ \text{So, }\frac{{t_{1}}}{{t_{2}}}$ =$\frac{h {1}+\frac{\text{1}}{\text{2}}\text{gt}^2$ {\text{1}}^{\text{2}}}}{{h{2}}+\frac{\text{1}}{\text{2}}\text{gt}_{2}^{\text{2}}}$

$ \Rightarrow h _{1}t _{2}-h _{2}t _{1}=\frac{1}{2}g( t _{1}t _{2}^{2}-t _{1}^{2}t _{2} ) $

Time of flight $ \text{= } \frac{2u}{g} \text{ sin}\theta $

$\text{g=}\frac{h _{1}t _{2}^{2}-h _{2}t _{1}^{2}}{t _{2}-t _{1}} $ [Use the above equation to simplify]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें