Kinematics Question 636

Question: An object it’s projected with a velocity of $ 20m/s $ making an angle of $ 45{}^\circ $ with horizontal. The equation for the trajectory it’s $ h=Ax-Bx^{2} $ where h it’s height, x it’s horizontal distance, A and B are constants. The ratio A: b is $ ( \text{g = 10 m}{{\text{s}}^{-2}} ) $

Options:

A) $ 1:5 $

B)$ 5:1~~ $

C) $ 1:40 $

D)$ 40:1 $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given $ h=Ax-\text{B}{{\text{x}}^{\text{2}}} $ ,

on comparing with $ y=\text{x}\tan \theta -\frac{gx^{2}}{2u^{2}{{\cos }^{2}}\theta } $ ,

we get $ A=\tan \theta =tan45{}^\circ =1, $

and $ \text{B}\text{=}\frac{g}{2u^{2}{{\cos }^{2}}\theta }=\frac{10}{2\times 20^{2}\times {{\cos }^{2}}45{}^\circ }=\frac{1}{40} $

$ \therefore \frac{\text{A}}{\text{B}}=40. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें