Kinematics Question 637

Question: The position of a projectile launched from the origin at $ t=0 $ it’s given by $ \vec{r}=(40\hat{i}+50\hat{j})m $ at 2s. If the projectile was launched at an angle $ \theta $ from the horizontal, then $ \theta $ it’s (take $ \text{g = 10 m}{{\text{s}}^{-2}} $ )

Options:

A) $ {{\tan }^{-1}}\frac{2}{3} $

B)$ {{\tan }^{-1}}\frac{3}{2} $

C) $ {{\tan }^{-1}}\frac{7}{4} $

D)$ {{\tan }^{-1}}\frac{4}{5} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] From question,

Horizontal velocity (initial), $ {{\text{u}} _{\text{x}}}\text{=}\frac{\text{40}}{\text{2}}\text{=20 m/s} $

Vertical velocity (initial),$ \text{50=}{{\text{u}} _{\text{y}}}\text{t+}\frac{\text{1}}{\text{2}}\text{g}{{\text{t}}^{\text{2}}} $

$ \Rightarrow {{\text{u}} _{\text{y}}}\times 2+\frac{1}{2}( -10 )\times 4;\text{ or, }{{u _{y}}}=\frac{70}{2}=35\text{ m/s;} $

$ \therefore \tan \theta =\frac{{{\text{u}} _{\text{y}}}}{{{\text{u}} _{\text{x}}}}=\frac{35}{20}=\frac{7}{4}\Rightarrow \text{ Angle}\theta \text{=}\text{ta}{{\text{n}}^{-1}}\frac{7}{4} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें