Kinematics Question 644

Question: Three particles A, B and C are thrown from the top of a tower with the same speed. a is thrown up, b is thrown down and c is horizontally. They hit the ground with speeds $ {{\text{v}} _{\text{A}}} $ , $ {{\text{v}} _{\text{B}}} $ and $ {{\text{v}} _{\text{C}}} $ respectively then,

Options:

A) $ {{\text{v}} _{\text{A}}}\text{=}{{\text{v}} _{\text{B}}}\text{=}{{\text{v}} _{\text{C}}} $

B)$ {{\text{v}} _{\text{A}}}\text{=}{{\text{v}} _{\text{B}}}\text{}{{\text{v}} _{\text{C}}} $

C) $ {{\text{v}} _{\text{A}}}\text{}{{\text{v}} _{\text{C}}}\text{}{{\text{v}} _{\text{B}}} $

D)$ {{\text{v}} _{\text{A}}}\text{}{{\text{v}} _{\text{B}}}\text{=}{{\text{v}} _{\text{C}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] For A: It goes up with velocity u will it reaches it’s maximum height (i.e. velocity becomes zero) and comes back to O and attains velocity u..

Using $ v^{2}=u^{2}+2as\Rightarrow v _{A}=\sqrt{u^{2}+2gh} $

For B, going down with velocity u

$ \Rightarrow {{\text{v}} _{\text{B}}}=\sqrt{{{u^{2}}}+2\text{gh}} $

For C, horizontal velocity remains same, i.e. u.

Vertical velocity $ =\sqrt{0+2\text{gh}}=\sqrt{2\text{gh}} $

The resultant $ {{\text{v}} _{\text{C}}}=\sqrt{{{\text{v}} _{\text{x}}}^{2}+{{\text{v}} _{\text{y}}}^{2}}\text{=}\sqrt{{{\text{u}}^{\text{2}}}\text{+2gh}}. $

Hence $ {{\text{v}} _{\text{A}}}={{\text{v}} _{\text{B}}}={{\text{v}} _{\text{C}}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें