Kinetic Theory Of Gases Question 4

Question: The molecules of a given mass of a gas have root mean square speeds of $ 100,m{{s}^{-1}} $ at $ 27{}^\circ C $ and 1.00 atmospheric pressure. What will be the root mean square speeds of the molecules of the gas at $ 127{}^\circ C $ and 2.0 atmospheric pressure?

Options:

A) $ \frac{150}{\sqrt{3}}m/s $

B) $ \frac{125}{\sqrt{3}}m/s $

C) $ \frac{200}{\sqrt{3}}m/s $

D) $ 100\sqrt{3}m/s $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] We know that for a given mass of a gas $ v _{rms}=\sqrt{\frac{3RT}{M}} $ Where R is gas constant, T is temperature in kelvin and M is molar mass of the gas. Clearly for a given gas, $ v _{rms}\propto \sqrt{T} $ , as R, M are constants. Hence,

$ \frac{(v_rms)_1}{(v_rms)_2}$

=$\sqrt{\frac{T _{1}}{T _{2}}}…(i) $

Given, $ {{(v _{rms})} _{1}}=100m/s $

$ T _{1}=27{}^\circ C=27+273=300K $

$ T _{2}=127{}^\circ C=127+273=400K $

$ \

Therefore $ Form Eq. (i) $ \frac{100}{{{(v _{rms})} _{2}}}=\sqrt{\frac{300}{400}}=\frac{\sqrt{3}}{2} $

$ \Rightarrow {{(v _{rms})} _{2}}=\frac{2\times 100}{\sqrt{3}}=\frac{200}{\sqrt{3}}m/s $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें