Kinetic Theory Of Gases Question 146

Question: Three perfect gases at absolute temperatures $ T _{1},,T _{2} $ and $ T _{3} $ are mixed. The masses of molecules are $ m _{1},,m _{2} $ and $ m _{3} $ and the number of molecules are $ n _{1},,n _{2} $ and $ n _{3}, $ respectively. Assuming no loss of energy, the final temperature of the mixture is

Options:

A) $ \frac{(T _{1}+T _{2}+T _{3})}{3} $

B) $ \frac{n _{1}T _{1}+n _{2}T _{2}+n _{3}T _{3}}{n _{1}+n _{2}+n _{3}} $

C) $ \frac{n _{1}T _{1}+n _{2}T _{2}^{2}+n _{3}T _{3}^{2}}{n _{1}T _{1}+n _{2}T _{2}+n _{3}T _{3}} $

D) $ \frac{n _{1}^{2}T _{1}^{2}+n _{3}^{2}T _{2}^{2}+n _{3}^{2}T _{3}^{2}}{n _{1}T _{1}+n _{2}T _{2}+n _{3}T _{3}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Let $ T _{3}>T _{2}>T _{1} $ and final temperature is T such that $ T _{3}>T>T _{2}>T _{1} $ . Now heat gained by first tow gases is equal to heat lost by third gas $ n _{1}C(T-T _{1})+n _{2}C(T-T _{2})=n _{3}C(T _{3}-T) $

$ \Rightarrow $ $ T=\frac{n _{1}T _{1}+n _{2}T _{2}+n _{3}T _{3}}{n _{1}+n _{2}+n _{3}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें