Kinetic Theory Of Gases Question 148

Question: Let $ \overline{v},,v _{rms} $ and $ v _{p} $ respectively denote the mean speed, root mean square speed and most probable speed of the molecules in an ideal monoatomic gas at absolute temperature T, the mass of a molecule is m. Then

Options:

A) $ v _{p}<\overline{v}<v _{rms} $

B) The average kinetic energy of a molecule is $ \frac{3}{4}mv _{p}^{2} $

C) No molecule can have speed greater than $ \sqrt{2}v _{rms} $

D) No molecule can have speed less than $ v _{p}/\sqrt{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ v _{rms}=\sqrt{\frac{3RT}{M}},VP=\sqrt{\frac{2RT}{M}}=0.816,v _{rms} $ $ \overset{\to }{\mathop{v}},=\sqrt{\frac{8RT}{\pi M}}=0.92,v _{rms}\Rightarrow v _{P}<\overrightarrow{v}<v _{rms} $ Further $ E _{av}=\frac{1}{2}mv _{rms}^{2}=\frac{1}{2}m\frac{3}{2}v _{p}^{2}=\frac{3}{2}mv _{p}^{2} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें