Kinetic Theory Of Gases Question 169

Question: A box contains N molecules of a perfect gas at temperature $ T _{1} $ and pressure $ P _{1} $ . The number of molecules in the box is doubled keeping the total kinetic energy of the gas same as before. If the new pressure is $ P _{2} $ and temperature $ T _{2}, $ then

Options:

A) $ P _{2}=P,T _{2}=T _{1} $

B) $ P _{2}=P _{1},,T _{2}=\frac{T _{1}}{2} $

C) $ P _{2}=2P _{1},,T _{2}=T _{1} $

D) $ P _{2}=2P _{1},,T _{2}=\frac{T _{1}}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Kinetic energy of N molecule of gas, $ E=\frac{3}{2}NkT $ Initially, $ E _{1}=\frac{3}{2}N _{1}kT _{1} $ and finally, $ E _{2}=\frac{3}{2}N _{2}kT _{2} $ But according to $ E _{1}=R _{2} $ and $ N _{2}=2N _{1}, $ $ \frac{3}{2}N _{1}kT _{1}=\frac{3}{2},(2N _{1})kT _{2}\Rightarrow ,T _{2}=\frac{T _{1}}{2} $ Since the kinetic energy constant, $ \frac{3}{2}N _{1}kT _{1}=\frac{3}{2}N _{2}kT _{2} $

$ \Rightarrow $ $ N _{1}T _{1}=N _{2}T _{2} $

$ \

Therefore $ $ NT= $ Constant From ideal gas equation of N molecules, $ PV=NkT $

$ \Rightarrow $ $ P _{1}V _{1}=P _{2}V _{2}\Rightarrow ,P _{1}=P _{2} $ [as $ V _{1}=V _{2} $ and $ NT= $ constant]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें