Kinetic Theory Of Gases Question 173

Question: A box has been placed on train moving uniformly with speed $ V _{0}. $ The box contains ideal gas. The value of root mean square speed with respect to an observer present in the trains is $ V _{1}. $ What will be the value of root mean square speed with respect to an observer standing on the platform?

Options:

A) $ V _{1}+V _{0} $

B) $ V _{1} $

C) $ {{{V _{1}^{2}+V _{0}^{2}}}^{1/2}} $

D) None

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let velocity of a molecule w.r.t. observer present in the train is $ \overrightarrow{V’} $ . Velocity of the molecule w.r.t. observer on the plate form is $ \overrightarrow{V _{0}}+\overrightarrow{V}’\overrightarrow{V _{0}} $ is the velocity of train w.r.t. plate form Now, $ V _{rms}=\sqrt{\frac{\sum\limits _{{}}^{{}}{{{| \overrightarrow{V _{0}}+\overrightarrow{V}’ |}^{2}}}}{n}} $

$ (n\to $ total number of molecule)

$ =\sqrt{\frac{\sum ({{{\vec{V}}} _{0}}+\vec{V}’)\cdot ({{{\vec{V}}} _{0}}+\vec{V}’)}{n}} $

$ =\sqrt{\frac{\sum (\text{V} _{0}^{2}+\text{V}{{’}^{2}})\cdot (2{{{\vec{V}}} _{0}}\cdot \vec{V}’)}{n}} $

$ =\sqrt{\frac{\sum V _{0}^{2}}{n}+\frac{\sum V’}{n}+\frac{\sum 2(\overrightarrow{V _{0}}.\overrightarrow{V})}{n}} $

$ =\sqrt{V _{0}^{2}+{{(V _{1})}^{2}}+2\overrightarrow{V _{0}}.\frac{(\sum \overrightarrow{V’})}{n}} $

$ \sum \overrightarrow{V’}= $ zero (Relative to the box molecules are moving arbitrarily in all directions).