Kinetic Theory Of Gases Question 173

Question: A box has been placed on train moving uniformly with speed $ V _{0}. $ The box contains ideal gas. The value of root mean square speed with respect to an observer present in the trains is $ V _{1}. $ What will be the value of root mean square speed with respect to an observer standing on the platform?

Options:

A) $ V _{1}+V _{0} $

B) $ V _{1} $

C) $ {{{V _{1}^{2}+V _{0}^{2}}}^{1/2}} $

D) None

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Let velocity of a molecule w.r.t. observer present in the train is $ \overrightarrow{V’} $ . Velocity of the molecule w.r.t. observer on the plate form is $ \overrightarrow{V _{0}}+\overrightarrow{V}’\overrightarrow{V _{0}} $ is the velocity of train w.r.t. plate form Now, $ V _{rms}=\sqrt{\frac{\sum\limits _{{}}^{{}}{{{| \overrightarrow{V _{0}}+\overrightarrow{V}’ |}^{2}}}}{n}} $

$ (n\to $ total number of molecule)

$ =\sqrt{\frac{\sum ({{{\vec{V}}} _{0}}+\vec{V}’)\cdot ({{{\vec{V}}} _{0}}+\vec{V}’)}{n}} $

$ =\sqrt{\frac{\sum (\text{V} _{0}^{2}+\text{V}{{’}^{2}})\cdot (2{{{\vec{V}}} _{0}}\cdot \vec{V}’)}{n}} $

$ =\sqrt{\frac{\sum V _{0}^{2}}{n}+\frac{\sum V’}{n}+\frac{\sum 2(\overrightarrow{V _{0}}.\overrightarrow{V})}{n}} $

$ =\sqrt{V _{0}^{2}+{{(V _{1})}^{2}}+2\overrightarrow{V _{0}}.\frac{(\sum \overrightarrow{V’})}{n}} $

$ \sum \overrightarrow{V’}= $ zero (Relative to the box molecules are moving arbitrarily in all directions).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें