Kinetic Theory Of Gases Question 59

Question: The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are $ 6.21\times {{10}^{-21}}J $ and 484 m/s respectively The corresponding values at 600 K are nearly (assuming ideal gas behavior)

Options:

A) $ 12.42\times {{10}^{-21}}J,928m/s $

B) $ 8.78\times {{10}^{-21}}J,684m/s $

C) $ 6.21\times {{10}^{-21}}J,968m/s $

D) $ 12.42\times {{10}^{-21}}J,684m/s $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] The formula for average kinetic energy is $ \overline{\text{K}\text{.E}\text{.}}=\frac{3}{2}kT$

$\

Therefore \frac{{( \overline{\text{K}\text{.E}\text{.}} )_600K}}{{( \overline{\text{K}\text{.E}\text{.}} )_300K}}=\frac{600}{300} $

$ \Rightarrow {{(\overline{\text{K}\text{.E}\text{.}})} _{600K}}=2\times 6.21\times {{10}^{-21}}J $

$ =,12.42,\times {{10}^{-21}},J $

Also the formula for r.m.s. velocity is $ C _{rms}=\sqrt{\frac{3KT}{m}}$

$\

Therefore \frac{(C_rms)_600K}{(C_rms)_300K}$=$\sqrt{\frac{600}{300}} $

$ \Rightarrow {{(C _{rms})} _{600K}}=\sqrt{2}\times 484=684m/s $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें