Kinetic Theory Of Gases Question 86

Question: 4.0 g of a gas occupies 22.4 liters at NTP. The specific heat capacity of the gas at constant volume is $ 5.0J{{K}^{-1}}. $ If the speed of sound in this gas at NTP is $ 952m{{s}^{-1}}, $ then the heat capacity at constant pressure is (Take gas constant $ R=8.3J{{K}^{-1}}mo{{l}^{-1}} $ )

Options:

A) $ 7.5J{{K}^{-1}}mo{{l}^{-1}} $

B) $ 7.0J{{K}^{-1}}mo{{l}^{-1}} $

C) $ 8.5J{{K}^{-1}}mo{{l}^{-1}} $

D) $ 8.0J{{K}^{-1}}mo{{l}^{-1}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Molar mass of the gas = 4g/mol Speed of sound $ V=\sqrt{\frac{\gamma RT}{m}}\Rightarrow 952=\sqrt{\frac{\gamma \times 3.3\times 273}{4\times {{10}^{-3}}}} $
$ \Rightarrow ,\gamma =1.6=\frac{16}{10}=\frac{8}{5} $ Also, $ \gamma =\frac{C _{P}}{C _{v}}=\frac{8}{5} $

$ \text{So, }C _{p}=\frac{8\times 5}{5}=8J{{K}^{-1}}mo{{l}^{-1}} $

$ [ C _{v}=5.0J{{K}^{-1}}given ] $