Kinetic Theory Of Gases Question 86

Question: 4.0 g of a gas occupies 22.4 liters at NTP. The specific heat capacity of the gas at constant volume is $ 5.0J{{K}^{-1}}. $ If the speed of sound in this gas at NTP is $ 952m{{s}^{-1}}, $ then the heat capacity at constant pressure is (Take gas constant $ R=8.3J{{K}^{-1}}mo{{l}^{-1}} $ )

Options:

A) $ 7.5J{{K}^{-1}}mo{{l}^{-1}} $

B) $ 7.0J{{K}^{-1}}mo{{l}^{-1}} $

C) $ 8.5J{{K}^{-1}}mo{{l}^{-1}} $

D) $ 8.0J{{K}^{-1}}mo{{l}^{-1}} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Molar mass of the gas = 4g/mol Speed of sound $ V=\sqrt{\frac{\gamma RT}{m}}\Rightarrow 952=\sqrt{\frac{\gamma \times 3.3\times 273}{4\times {{10}^{-3}}}} $
$ \Rightarrow ,\gamma =1.6=\frac{16}{10}=\frac{8}{5} $ Also, $ \gamma =\frac{C _{P}}{C _{v}}=\frac{8}{5} $

$ \text{So, }C _{p}=\frac{8\times 5}{5}=8J{{K}^{-1}}mo{{l}^{-1}} $

$ [ C _{v}=5.0J{{K}^{-1}}given ] $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें