Laws Of Motion Question 324

Question: The force required to just move a body up the inclined plane is double the force required to just prevent the body from sliding down the plane. The coefficient of friction is$ \mu $ . The inclination $ \theta $ of the plane is

Options:

A) $ {{\tan }^{-1}}\mu $

B) $ {{\tan }^{-1}}( \mu /2 ) $

C) $ {{\tan }^{-1}}2\mu $

D) $ {{\tan }^{-1}}3\mu $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] In case [a] In case [b] $ mg\sin \theta ={{F} _{1}}-\mu N$

$\text{N=mg sin}\theta \text{ }\therefore \text{mg sin}\theta \text{+}\mu \text{mg cos}\theta \text{=}{{\text{F}} _{1}}$

$ \text{In second case }\left( b \right)$

$\mu N+{{F} _{2}}=\text{mg sin}\theta$

$\Rightarrow \mu \text{mg cos}\theta -{{F} _{2}}=mg\sin \theta $

$\text{or }{{F} _{2}}=mg\sin \theta -\mu mg\cos \theta \text{ but }{{F} _{1}}=2{{F} _{2}}$

$\text{therefore mg sin}\theta +\mu mg\cos \theta $

$=2\left( mg\sin \theta -\mu mg\cos \theta \right)$

$mg\sin \theta =3\mu mg\cos \theta $

$ \text{or }\tan \theta =3\mu \text{ or }\theta \text{=ta}{{\text{n}}^{-1}}\left( 3\mu \right)$

[d]



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें