Laws Of Motion Question 333

Question: The minimum force required to start pushing a body up rough (frictional coefficient u) inclined plane is $ F _{1} $ while the minimum force needed to prevent it from sliding down is$ F _{2} $ . If the inclined plane makes an angle $ \theta $ from the horizontal such that$ \tan \theta =2\mu $ then the ratio $ \frac{F _{1}}{F _{2}} $ is

Options:

A) 1

B) 2

C) 3

D) 4

Show Answer

Answer:

Correct Answer: C

Solution:

[c] For the upward motion of the body $ mg sin \theta+ f _{1} = F _{1} $

or, $ F _{1} = mg sin \theta+\mu mg cos \theta $

For the downward motion of the body, $ mgsin\theta -f _{2}=F _{2} $

$ orF _{2}=mgsin\theta -\mu mgcos\theta $

$ \therefore \frac{F _{1}}{F _{2}}=\frac{sin\theta +\mu cos\theta }{sin\theta -\mu cos\theta } $

$ \Rightarrow \frac{\tan\theta+ \mu }{\tan\theta- \mu }= \frac{2\mu+\mu }{2\mu-\mu }=\frac{3\mu }{\mu }=3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें