Laws Of Motion Question 337

Question: A given object takes n times as much time to slide down a $ 45{}^\circ $ rough incline as it takes to slide down a perfectly smooth$ 45{}^\circ $ incline. The coefficient of friction between the object and the incline is

Options:

A) $ ( 1-1/n^{2} ) $

B) $ 1/( 1-n^{2} ) $

C) $ \sqrt{( 1-1/n^{2} )} $

D) $ 1/\sqrt{( 1-n^{2} )} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ Smooth\text{ }surface,,,S=\frac{1}{2}g,,\sin ,,\theta ,,{{t} _{1}}^{2}….(i)$

$ For \text{ rough }surface,\text a=g{}sin,\theta -\mu ,,\cos \theta \text{ }{{\text{t}} _{\text{2}}}^{\text{2}}$

$\therefore ,,s=\frac{1}{2}g\left( sin\theta -\mu cos\theta \right){{t} _{2}}^{2}$ …(ii)

From (i) and (ii), $\therefore ,,s=\frac{1}{2}gsin\theta {{t} _{1}}^{2}=\frac{1}{2}\left( sin\theta -\mu cos\theta \right){{t} _{2}}^{2}$ Given $\theta ={{45}^{o}}\therefore {{t} _{1}}^{2}=\left( 1-\mu \right){{t} _{2}}^{2}$

Also, given that. ${{t} _{2}}=n{{t} _{1}}\therefore {{t} _{1}}^{2}=(1-\mu ){{n}^{2}}{{t} _{1}}^{2}$

$\frac{1}{{{n}^{2}}}=1-\mu \therefore \mu =\left( 1-\frac{1}{{{n}^{2}}} \right)$



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें