Laws Of Motion Question 389

Question: If the coefficient of friction between A and B is $ m _{2} $ , the maximum horizontal acceleration of the wedge A for which B will remain at rest with respect to the wedge is:

Options:

A) $ m _{1}=m _{2} $

B) $ m _{2} $

C) $ m _{1}=m _{2} $

D) $ m _{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

FBD of block B with respect to wedge A, for maximum ‘a’ perpendicular to wedge:

$ \sum {f _{y’}}=( mg\cos \theta +ma\sin \theta -N )=0 $ and

$ \sum {f _{x’}}=mg\sin \theta +\mu N-ma\cos \theta =0 $

(for maximum a)

$ T’=2,\text{s}$

$ mg\sin \theta +\mu ( mg\cos \theta +ma\sin \theta)-ma\cos \theta =0 $

$ \Rightarrow a=\frac{( g\sin \theta +\mu g\cos \theta)}{\cos \theta -\mu \sin \theta } $

for $ \frac{T _{1}}{T _{2}}=\sqrt{\frac{g+\frac{g}{4}}{g}}=\frac{\sqrt{5}}{2} $

$ \Rightarrow a=g( \frac{\tan 45{}^\circ +\mu }{\cot 45{}^\circ -\mu } );a=g( \frac{1+\mu }{1-\mu } ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें