Laws Of Motion Question 431

Question: A particle moves in the $ x-y $ plane under the action of a force $ \overrightarrow{F} $ such that the value of its linear momentum $ \overrightarrow{P} $ at any time $ t $ is $ P _{x}=2\cos t, $

$ P _{y}=2\sin t $ . The angle $ \theta $ between $ \overrightarrow{F} $ and $ \overrightarrow{P} $ at a given time t will be

Options:

A) $ 90{}^\circ $

B) $ 0{}^\circ $

C) $ 180{}^\circ $

D) $ 30{}^\circ $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ P=\sqrt{P _{x}^{2}+P _{y}^{2}}=\sqrt{{{(2\cos t)}^{2}}+{{(2\sin t)}^{2}}}=2 $

If m is the mass of the body, then kinetic energy $ =\frac{P^{2}}{2m}=\frac{{{(2)}^{2}}}{2m}=\frac{2}{m} $

Since kinetic energy does not change with time, both work done and power are zero. Now, power $ =Fv\cos \theta =0 $ As $ F\ne 0,v\ne 0 $

$ \therefore $ $ \cos \theta =0 $ or$ \theta =90{}^\circ $

As direction of $ \vec{p} $ is same that of $ \vec{v}, $

$ (\because \overrightarrow{P}=m\overrightarrow{v}), $ hence angle between $ \overrightarrow{F} $

and $ \overrightarrow{P} $ is equal to $ 90{}^\circ $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें