Laws Of Motion Question 99

Question: A car is moving along a straight horizontal road with a speed $ v _{0} $ . If the coefficient of friction between the tyres and the road is $ \mu $ , the shortest distance in which the car can be stopped is[MP PET 1985; BHU 2002]

Options:

A)$ \frac{v _{0}^{2}}{2\mu g} $

B) $ \frac{v _{0}}{\mu g} $

C) $ {{( \frac{v _{0}}{\mu g} )}^{2}} $

D) $ \frac{v _{0}}{\mu } $

Show Answer

Answer:

Correct Answer: A

Solution:

Retarding force $ F=ma=\mu R=\mu \ mg $

$ \therefore $ $ a=\mu g $ Now from equation of motion$ v^{2}=u^{2}-2as $

$ \Rightarrow \ 0=u^{2}-2as $

therefore $ s=\frac{u^{2}}{2a}=\frac{u^{2}}{2\mu \ g} $

$ \therefore $ $ =\frac{v _{0}^{2}}{2\mu g} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें