Laws Of Motion Question 145

Question: The force required just to move a body up an inclined plane is double the force required just to prevent the body sliding down. If the coefficient of friction is 0.25, the angle of inclination of the plane is

Options:

A) $ 37{}^\circ $

B) $ 45{}^\circ $

C) $ 30{}^\circ $

D) $ ~53{}^\circ $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Retardation in upward motion $ =g(sin\theta +\mu cos\theta ) $

$ \therefore $ force required just to move up $ F _{up}=mg(\sin \theta +\mu \cos \theta ) $ Similarly for downward motion$ a=g(\sin \theta +\mu \cos \theta ) $

$ \therefore $ Force required just to prevent the body sliding down $ F _{dn}=mg(\sin \theta -\mu \cos \theta ) $ According to problem $ F _{up}=2F _{dn} $

$ \Rightarrow mg(sin\theta +\mu cos\theta )=2mg(sin\theta -\mu cos\theta ) $

$ \Rightarrow \sin \theta +\mu cos\theta =2sin\theta -2\mu cos\theta $

$ \Rightarrow 3\mu \cos \theta =\sin \theta \Rightarrow \tan \theta =3\mu $

$ \Rightarrow \theta ={{\tan }^{-1}}(3\mu )=ta{{n}^{-1}}(3\times 0.25)=ta{{n}^{-1}}(0.75)=37{}^\circ $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें