Laws Of Motion Question 167

Question: Two masses $ m _{1} $ and $ m _{2}( m _{1}>m _{2} ) $ are connected by massless flexible and inextensible string passed over massless and frictionless pulley. The acceleration of centre of mass is [J&K CET 2005]

Options:

A) $ {{( \frac{m _{1}-m _{2}}{m _{1}+m _{2}} )}^{2}}g $

B) $ \frac{m _{1}-m _{2}}{m _{1}+m _{2}}g $

C) $ \frac{m _{1}+m _{2}}{m _{1}-m _{2}}g $

D) Zero

Show Answer

Answer:

Correct Answer: A

Solution:

Acceleration of each mass $ =a=( \frac{m _{1}-m _{2}}{m _{1}+m _{2}} )\ g $ Now acceleration of centre of mass of the system $ A _{cm}=\frac{m _{1}\overrightarrow{a _{1}}+m _{1}\overrightarrow{a _{2}}}{m _{1}+m _{2}} $ As both masses move with same acceleration but in opposite direction so $ \overrightarrow{a _{1}}=-\overrightarrow{a _{2}} $ = a (let) $ \therefore \ \ A _{cm}=\frac{m _{1}a-m _{2}a}{m _{1}+m _{2}} $

$ =( \frac{m _{1}-m _{2}}{m _{1}+m _{2}} )\times ( \frac{m _{1}-m _{2}}{m _{1}+m _{2}} )\times g $

$ ={{( \frac{m _{1}-m _{2}}{m _{1}+m _{2}} )}^{2}}\times g $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें