Magnetic Effects Of Current Question 140

Question: A long straight wire along the z-axis carries a current I in the negative z direction. The magnetic vector field $ \overset{\to }{\mathop{B}}, $ at a point having coordinates (x, y) in the z = 0 plane is [IIT-JEE (Screening) 2002]

Options:

A) $ \frac{{\mu_{o}}I,(y\hat{i}-x\hat{j})}{2\pi (x^{2}+y^{2})} $

B) $ \frac{{\mu_{o}}I,(x\hat{i}+y\hat{j})}{2\pi (x^{2}+y^{2})} $

C) $ \frac{{\mu_{o}}I,(x\hat{j}-y\hat{i})}{2\pi (x^{2}+y^{2})} $

D) $ \frac{{\mu_{o}}I,(x\hat{i}-y\hat{j})}{2\pi (x^{2}+y^{2})} $

Show Answer

Answer:

Correct Answer: A

Solution:

Magnetic field at P is $ \overrightarrow{B} $ , perpendicular to OP in the direction shown in figure. So, $ \overrightarrow{B}=B\sin \theta ,\hat{i}-B\cos \theta ,\hat{j} $ Here $ B=\frac{{\mu_{0}}}{2\pi }\frac{I}{r} $ $ \sin \theta =\frac{y}{r} $ and $ \cos \theta =\frac{x}{r} $ \ $ \overrightarrow{B}=\frac{{\mu_{0}}I}{2\pi }\cdot \frac{1}{r^{2}}(y\hat{i}-x\hat{j})=\frac{{\mu_{0}}I(y\hat{i}-x\hat{j})}{2\pi (x^{2}+y^{2})} $ (as $ r^{2}=x^{2}+y^{2} $ )



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें