Magnetic Effects Of Current Question 240

Question: A charged particle with charge q enters a region of constant, uniform and mutually orthogonal fields $ \vec{E} $ and $ \vec{B} $ with a velocity $ \vec{v} $ perpendicular to both $ \vec{E} $ and $ \vec{B} $ , and comes out without any change in magnitude or direction of $ \vec{v} $ . Then

Options:

A) $ \vec{v}=\frac{\vec{B}\times \vec{E}}{E^{2}} $

B) $ \vec{v}=\frac{\vec{E}\times \vec{B}}{B^{2}} $

C) $ \vec{v}=\frac{\vec{B}\times \vec{E}}{B^{2}} $

D) $ \vec{v}=\frac{\vec{E}\times \vec{B}}{E^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] When $ \vec{E} $ and $ \vec{B} $ are perpendicular and velocity has no changes then $ qE=qvB $ i.e., $ v=\frac{E}{B}. $ The two forces oppose each other if v is along $ \vec{E}\times \vec{B} $ i.e., $ \vec{v}=\frac{\vec{E}\times \vec{B}}{B^{2}} $ as $ \vec{E} $ and $ \vec{B} $ are perpendicular to each other. $ \frac{\vec{E}\times \vec{B}}{B^{2}}=\frac{EB\sin 90{}^\circ }{B^{2}}=\frac{E}{B} $ For historic and standard experiments like Thomson?s e/m value, if v is given only as E/B, it would have been better form the pedagogic view, although the answer is numerically correct.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें