Magnetic Effects Of Current Question 279

Question: If a particle of charge $ {{10}^{-12}},coulomb $ moving along the $ \hat{x}- $ direction with a velocity $ 10^{5},m/s $ experiences a force of $ {{10}^{-10}},newton $ in $ \hat{y}- $ direction due to magnetic field, then the minimum magnetic field is [MP PMT 1994]

Options:

A) $ 6.25\times 10^{3},tesla $ in $ \hat{z}- $ direction

B) $ {{10}^{-15}},tesla $ in $ \hat{z}- $ direction

C) $ 6.25\times {{10}^{-3}},tesla $ in $ \hat{z}- $ direction

D) $ {{10}^{-3}},tesla $ in $ \hat{z}- $ direction

Show Answer

Answer:

Correct Answer: D

Solution:

$ F=qvB\sin \theta $

Þ $ B=\frac{F}{qv\sin \theta } $ $ {B_{\min }}=\frac{F}{qv} $ (when q = 90o)
$ \therefore \ {B_{\min }}=\frac{F}{qv}=\frac{{{10}^{-10}}}{{{10}^{-12}}\times 10^{5}}={{10}^{-3}} $ Tesla in $ U=\frac{B^{2}}{2{\mu_{0}}}, $ -direction.