Magnetic Effects Of Current Question 37

Question: The magnetic induction at the centre O in the figure shown is [IIT 1988; KCET 2002]

Options:

A) $ \frac{{\mu_{0}}i}{4}( \frac{1}{R_{1}}-\frac{1}{R_{2}} ) $

B) $ \frac{{\mu_{0}}i}{4}( \frac{1}{R_{1}}+\frac{1}{R_{2}} ) $

C) $ \frac{{\mu_{0}}i}{4}(R_{1}-R_{2}) $

D) $ \frac{{\mu_{0}}i}{4}(R_{1}+R_{2}) $

Show Answer

Answer:

Correct Answer: A

Solution:

In the following figure, magnetic fields at O due to sections 1, 2, 3 and 4 are considered as $ B_{1},,B_{2},,B_{3} $ and $ B_{4} $ respectively. $ B_{1}=B_{3}=0 $ $ B_{2}=\frac{{\mu_{0}}}{4\pi }.\frac{\pi ,i}{R_{1}}\otimes $ $ B_{4}=\frac{{\mu_{0}}}{4\pi }.\frac{\pi ,i}{R_{2}} $ ¤ As $ |B_{2}|>|B_{4}| $ So $ B_{net}=B_{2}-B_{4}\Rightarrow B_{net}=\frac{{\mu_{0}}i}{4}( \frac{1}{R_{1}}-\frac{1}{R_{2}} )\otimes $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें