Magnetic Effects Of Current Question 409

Question: A particle of charge q and mass m starts moving from the origin under the action of an electric field $ \overset{\to }{\mathop{E}},=E_{0}\hat{i} $ and $ \overset{\to }{\mathop{B}},=B_{0}\hat{i} $ with velocity $ \overset{\to }{\mathop{v}},=v_{0}\hat{j} $ .The speed of the particle will become $ 2v_{0} $ after time

Options:

A) $ t=\frac{2mv_{0}}{qE} $

B) $ t=\frac{2Bq}{mv_{0}} $

C) $ t=\frac{\sqrt{3}Bq}{mv_{0}} $

D) $ t=\frac{\sqrt{3}mv_{0}}{qE} $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Electric force on the particle, $ F=Eq $ , and displacement $ s=\frac{1}{2}at^{2}=\frac{1}{2}( \frac{Eq}{m} )t^{2} $ . Now, $ W=\Delta K $ , or $ Fs=\frac{1}{2}m(v_{f}^{2}-v_{i}^{2}) $ or $ Eq\times \frac{1}{2}( \frac{Eq}{m} )t^{2} $ $ =\frac{1}{2}m[{{(2v_{0})}^{2}}-v_{0}^{2}] $
$ \therefore t=\frac{\sqrt{3}mv_{0}}{qE} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें