Magnetic Effects Of Current Question 414

Question: A charged particle of specific charge (charge/ mass) $ \alpha $ is released from origin at time t = 0 with velocity $ \overset{\to }{\mathop{v}},=v_{0}(\hat{i}+\hat{j}) $ in uniform magnetic field $ \overset{\to }{\mathop{B}},=B_{0}\hat{i} $ . Coordinates of the particle at time $ t=\pi /(B_{0}\alpha ) $

Options:

A) $ ( \frac{v_{0}}{2B_{0}\alpha },\frac{\sqrt{2}v_{0}}{\alpha B_{0}},\frac{-v_{0}}{B_{0}\alpha } ) $

B) $ ( \frac{-v_{0}}{2B_{0}\alpha },0,0 ) $

C) $ ( 0,\frac{2v_{0}}{B_{0}\alpha },\frac{v_{0}\pi }{2B_{0}\alpha } ) $

D) $ ( \frac{v_{0}\pi }{B_{0}\pi },0\frac{-2v_{0}}{B_{0}\alpha } ) $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ \alpha =\frac{q}{m} $ , path of the particle will be a helix of time period, $ T=\frac{2\pi m}{B_{0}q}=\frac{2\pi }{B_{0}\alpha } $ The give time $ t=\frac{\pi }{B_{0}\alpha }=\frac{T}{2} $
$ \therefore $ Coordinates of particle at time $ t=T/2 $ would be $ (vx,T/2,,0,-2r) $ Here, $ r=\frac{mv_{0}}{B_{0}q}=\frac{v_{0}}{B_{0}\alpha } $
$ \therefore $ The coordinate are $ ( \frac{v_{0}\pi }{B_{0}\alpha },0,\frac{-2v_{0}}{B_{0}\alpha } ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें