Magnetic Effects Of Current Question 88

Question: Two concentric coplanar circular loops of radii $ r_{1} $ and $ r_{2} $ carry currents of respectively $ i_{1} $ and $ i_{2} $ in opposite directions (one clockwise and the other anticlockwise.) The magnetic induction at the centre of the loops is half that due to $ i_{1} $ alone at the centre. If $ r_{2}=2r_{1}. $ the value of $ I_{2}/I_{1} $ is [MP PET 2000]

Options:

A) 2

B) 1/2

C) 1/4

D) 1

Show Answer

Answer:

Correct Answer: D

Solution:

Magnetic field at centre due to smaller loop $ B_{1}=\frac{{\mu_{0}}}{4\pi }.\frac{2\pi i_{1}}{r_{1}} $ ….. (i) Due to Bigger loop $ B_{2}=\frac{{\mu_{0}}}{4\pi }.\frac{2\pi i_{2}}{r_{2}} $ So net magnetic field at centre $ B=B_{1}-B_{2}=\frac{{\mu_{0}}}{4\pi }\times 2\pi ( \frac{i_{1}}{r_{1}}-\frac{i_{2}}{r_{2}} ) $ According to question $ B=\frac{1}{2}\times B_{1} $
$ \Rightarrow \frac{{\mu_{0}}}{4\pi }.2\pi ( \frac{i_{1}}{r_{1}}-\frac{i_{2}}{r_{2}} )=\frac{1}{2}\times \frac{{\mu_{0}}}{4\pi }.\frac{2\pi i_{1}}{r_{1}} $ $ \frac{i_{1}}{r_{1}}-\frac{i_{2}}{r_{2}}=\frac{i_{1}}{2r_{1}}\Rightarrow \frac{i_{1}}{2r_{1}}=\frac{i_{2}}{r_{2}}\Rightarrow \frac{i_{1}}{i_{2}}=1 $ $ {r_{2}=2r_{1}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें