Magnetism Question 40

Question: If $ {\varphi _{1}} $ and $ {\varphi _{2}} $ be the angles of dip observed in two vertical planes at right angles to each other and f be the true angle of dip, then

Options:

A) $ {{\cos }^{2}}\varphi ={{\cos }^{2}}{\varphi _{1}}+{{\cos }^{2}}{\varphi _{2}} $

B) $ {{\sec }^{2}}\varphi ={{\sec }^{2}}{\varphi _{1}}+{{\sec }^{2}}{\varphi _{2}} $

C) $ {{\tan }^{2}}\varphi ={{\tan }^{2}}{\varphi _{1}}+{{\tan }^{2}}{\varphi _{2}} $

D) $ {{\cot }^{2}}\varphi ={{\cot }^{2}}{\varphi _{1}}+{{\cot }^{2}}{\varphi _{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let a be the angle which one of the planes make with the magnetic meridian the other plane makes an angle $ (90^{o}-\alpha ) $ with it. The components of H in these planes will be $ H\cos \alpha $ and $ H\sin \alpha $ respectively. If $ {\varphi _{1}} $ and $ {\varphi _{2}} $ are the apparent dips in these two planes, then $ \tan {\varphi _{1}}=\frac{V}{H\cos \alpha } $ i.e. $ \cos \alpha =\frac{V}{H\tan {\varphi _{1}}} $ ….. (i) $ \tan {\varphi _{2}}=\frac{V}{H\sin \alpha } $ i.e. $ \sin \alpha =\frac{V}{H\tan {\varphi _{2}}} $ ….. (ii) Squaring and adding (i) and (ii), we get $ {{\cos }^{2}}\alpha +{{\sin }^{2}}\alpha ={{( \frac{V}{H} )}^{2}}( \frac{1}{{{\tan }^{2}}{\varphi _{1}}}+\frac{1}{{{\tan }^{2}}{\varphi _{2}}} ) $ i.e. $ 1=\frac{V^{2}}{H^{2}}( {{\cot }^{2}}{\varphi _{1}}+{{\cot }^{2}}{\varphi _{2}} ) $ or $ \frac{H^{2}}{V^{2}}={{\cot }^{2}}{\varphi _{1}}+{{\cot }^{2}}{\varphi _{2}} $ i.e. $ {{\cot }^{2}}\varphi ={{\cot }^{2}}{\varphi _{1}}+{{\cot }^{2}}{\varphi _{2}} $ This is the required result.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें