Magnetism Question 44

Question: A magnet is suspended in the magnetic meridian with an untwisted wire. The upper end of wire is rotated through $180 ^\circ$ to deflect the magnet by $30 ^\circ$ from magnetic meridian. When this magnet is replaced by another magnet, the upper end of wire is rotated through $270^\circ$ to deflect the magnet $30^\circ$ from magnetic meridian. The ratio of magnetic moments of magnets is

Options:

A) 1 : 5

B) 1 : 8

C) 5 : 8

D) 8 : 5

Show Answer

Answer:

Correct Answer: C

Solution:

Let M1 and M2 be the magnetic moments of magnets and H the horizontal component of earth’s field. We have $ \tau =MH\sin \theta $ . If f is the twist of wire, then $ \tau =C\varphi , $ C being restoring couple per unit twist of wire
$ \Rightarrow \ C\varphi =MH\sin \theta $ Here $ {\varphi _{1}}=(180^{o}-30^{o})=150^{o} $

$ =150\times \frac{\pi }{180} $ rad $ {\varphi _{2}}=(270^{o}-30^{o})=240^{o} $

$ =240\times \frac{\pi }{180} $ rad So, $ C{\varphi _{1}}=M _{1}H\sin \theta $ (For deflection $ \theta =30^{o} $ of I magnet) $ C{\varphi _{2}}=M _{2}H\sin \theta $ (For deflection $ \theta =30^{o} $ of II magnet) Dividing $ \frac{{\varphi _{1}}}{{\varphi _{2}}}=\frac{M _{1}}{M _{2}} $
$ \Rightarrow \frac{M _{1}}{M _{2}}=\frac{{\varphi _{1}}}{{\varphi _{2}}}=\frac{150\times ( \frac{\pi }{180} )}{240\times ( \frac{\pi }{180} )}=\frac{15}{24}=\frac{5}{8} $
$ \Rightarrow M _{1}:M _{2}=5:8 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें