Magnetism Question 89

Question: A magnet is suspended in such a way that it oscillates in the horizontal plane. It makes 20 oscillations per minute at a place where dip angle is $30^ \circ$ and 15 oscillations per minute at a place where dip angle is $60^ \circ$. The ratio of total earth’s magnetic field at the two places is

[MP PMT 1991; BHU 1997]

Options:

A) $ 3\sqrt{3}:8 $

B) $ 16:9\sqrt{3} $

C) $ 4:9 $

D) $ 2\sqrt{3}:9 $

Show Answer

Answer:

Correct Answer: B

Solution:

Given $ {\nu _{1}}=\frac{20}{60}=\frac{1}{3}{{\sec }^{-1}}\text{and}\ {\nu _{2}}=\frac{15}{60}=\frac{1}{4}{{\sec }^{-1}} $ Now $ \nu =\frac{1}{2\pi }\sqrt{\frac{MB _{H}}{I}}=\frac{1}{2\pi }\sqrt{\frac{MB\cos \varphi }{I}}\ \ ( \because B _{H}=B\cos \varphi ) $
$ \

Therefore \ \frac{{\nu _{1}}}{{\nu _{2}}}=\sqrt{\frac{B _{1}\cos {\varphi _{1}}}{B _{2}\cos {\varphi _{2}}}} $

Therefore $ \frac{B _{1}}{B _{2}}={{( \frac{{\nu _{1}}}{{\nu _{2}}} )}^{2}},{{( \frac{\cos {\varphi _{2}}}{\cos {\varphi _{1}}} )}^{2}} $

Therefore $ \frac{B _{1}}{B _{2}}={{( \frac{1/3}{1/4} )}^{2}}\frac{\cos 60{}^\circ }{\cos 30{}^\circ }=\frac{16}{9}\times \frac{1/2}{\sqrt{3}/2}=\frac{16}{9\sqrt{3}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें