Magnetism Question 96

Question: Magnets A and B are geometrically similar but the magnetic moment of A is twice that of B. If $T_1$ and $T_2$ be the time periods of the oscillation when their like poles and unlike poles are kept together respectively, then $ \frac{T _{1}}{T _{2}} $ will be

[SCRA 1998]

Options:

A) $ \frac{1}{3} $

B) $ \frac{1}{2} $

C) $ \frac{1}{\sqrt{3}} $

D) $ \sqrt{3} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ T _{Sum}=2\pi \sqrt{\frac{(I _{1}+I _{2})}{(M _{1}+M _{2})B _{H}}} $

$ T _{diff}=2\pi \sqrt{\frac{I _{1}+I _{2}}{(M _{1}-M _{2})B _{H}}} $
$ \Rightarrow \frac{T _{s}}{T _{d}}=\frac{T _{1}}{T _{2}}=\sqrt{\frac{M _{1}-M _{2}}{M _{1}+M _{2}}}=\sqrt{\frac{2M-M}{2M+M}}=\frac{1}{\sqrt{3}} $