Magnetism Question 258

Question: A compass needle placed at a distance r from a short magnet in Tan A position shows a deflection of $ 60{}^\circ $ . If the distance is increased to r $ {{(3)}^{1/3}} $ , then deflection of compass needle is

Options:

A) $ 30^{o} $

B) $ 60\times {{3}^{\frac{1}{3}}} $

C) $ 60\times {{3}^{\frac{2}{3}}} $

D) $ 60\times {{3}^{\frac{3}{3}}} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \frac{\tan ,{\theta _{2}}}{\tan ,{\theta _{1}}}=\frac{d _{1}^{3}}{d _{2}^{3}}=\frac{r^{3}}{{{[r{{(3)}^{1/3}}]}^{3}}}=\frac{1}{3} $

$ \tan ,{\theta _{2}}=\frac{1}{3}\tan ,{\theta _{1}}=\frac{\tan 60}{3}=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}} $
$ \

Therefore ,,,,,{\theta _{2}}=30{}^\circ $