Nuclear Physics And Radioactivity Question 105

Question: The radioactivity of sample is $ R_{1} $ at a time $ T_{1} $ and $ R_{2} $ at a time $ T_{2} $ . If the half-life of the specimen is T, the number of atoms that have disintegrated in the time ( $ T_{2}-T_{1} $ ) is proportional to

Options:

A) $ R_{1}T_{1}-R_{2}T_{2} $

B) $ R_{1}-R_{2} $

C) $ \frac{(R_{1}-R_{2})}{4} $

D) $ (R_{1}-R_{2}) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ T_{1}=N_{1}\lambda ,R_{2}=N_{2}\lambda $ Also $ T=\frac{{\log_{e}}2}{\lambda } $ or $ \lambda =\frac{{\log_{e}}2}{T} $ $ \therefore R_{1}-R_{2}=(N_{1}-N_{2})\lambda $ $ =(N_{1}-N_{2})\frac{{\log_{e}}2}{T} $
$ \therefore (N_{1}-N_{2})=\frac{(R_{1}-R_{2})T}{{\log_{e}}2} $ i.e. $ (N_{1}-N_{2})\propto (R_{1}-R_{2})T $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें