Nuclear Physics And Radioactivity Question 122

Question: A star initially has 1040 deuterons. It produces energy via the processes $ _{1}H^{2}+ _{1}H^{2}\to _{1}H^{3}+p $ $ _{1}H^{2}+ _{1}H^{3}\to _{2}H^{4}+n $ The masses of the nuclei are as follows: $ M(H^{2}) $ = 2.014 amu; M (p) = 1.007 amu; $ M(n) $ = 1.008 amu; $ M(He^{4}) $ = 4.001 amu If the average power radiated by the star is $ 10^{16} $ W, the deuteron supply of the star is exhausted in a time of the order of

Options:

A) $ 10^{6} $

B) $ 10^{8}\sec $

C) $ 10^{12}\sec $

D) $ 10^{16}\sec $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] Mass defect $ =3\times 2.014-4.001-1.007-1.008 $ $ =0.026amu=0.026\times 931\times 10^{6}\times 1.6\times {{10}^{-19}}J $ $ =3.82\times {{10}^{-12}}J $ Power of star $ =10^{16}W $ Number of deuterons used $ =\frac{10^{16}}{\Delta M}=0.26\times 10^{28} $ Deuteron supply exhausts in $ \frac{10^{40}}{0.26\times 10^{28}}=10^{12}s $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें