Nuclear Physics And Radioactivity Question 381

Question: The half-life of a sample of a radioactive substance is 1 hour. If $ 8\times 10^{10} $ atoms are present at $ t=0 $ , then the number of atoms decayed in the duration $ t=2 $ hour to $ t=4 $ hour will be [MP PMT 2004]

Options:

A) $ 2\times 10^{10} $

B) $ 1.5\times 10^{10} $

C) Zero

D) Infinity

Show Answer

Answer:

Correct Answer: B

Solution:

$ N=N_{0}{{( \frac{1}{2} )}^{\frac{t}{T_{1l2}}}} $ No of atoms at t = 2hr, $ N_{1}=8\times 10^{10}{{( \frac{1}{2} )}^{\frac{2}{1}}}=2\times 10^{10} $ No. of atoms at t = 4hr, $ N_{2}=8\times 10^{10}{{( \frac{1}{2} )}^{\frac{4}{1}}}=\frac{1}{2}\times 10^{10} $ \ No. of atoms decayed in given duration $ =( 2-\frac{1}{2} )\times 10^{10}=1.5\times 10^{10} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें