Nuclear Physics And Radioactivity Question 434

At radioactive equilibrium, the ratio between the atoms of two radioactive elements (X) and (Y) is found to be $ 3.2\times 10^{9}:1 $ respectively. If half-life of the element X is $ 1.6\times 10^{10} $ years, then half-life of the element W would be

Options:

A) $ 3.2\times 10^{9}years $

B) $ 5\times 10^{9}years $

C) $ 1.6\times 10^{10}years $

D) 5 years

Show Answer

Answer:

Correct Answer: D

Solution:

$ X\xrightarrow{{\lambda_{1}}}Y\xrightarrow{{\lambda_{2}}}Z $ At radioactive equilibrium, $ ({\lambda_{X}})\times (N_{X})=({\lambda_{Y}})\times (N_{Y}) $ $ \frac{{\lambda_{X}}}{{\lambda_{Y}}}=\frac{N_{Y}}{N_{X}}\frac{{{({t_{1/2}})}{Y}}}{{{({t{1/2}})}{X}}} $ or $ \frac{{{({t{1/2}})}{Y}}}{1.6\times 10^{10}} $ $ =\frac{1}{3.2\times 10^{9}}{{({t{1/2}})}_{Y}}=5years $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें