Nuclear Physics And Radioactivity Question 447

Question: The activity of a radioactive sample is $ A_{1} $ at time $ t_{1} $ and $ A_{2} $ at time $ t_{2} $ . If $ \tau $ is average life of sample then the number of nuclei decayed in time ( $ t_{2}-t_{1} $ ) is

Options:

A) $ A_{1}t_{1}-A_{2}t_{2} $

B) $ \frac{( A_{2}-A_{1} )}{2}\tau $

C) $ ( A_{1}-A_{2} )( t_{2}-t_{1} ) $

D) $ ( A_{1}-A_{2} )\tau . $

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Let $ N_{0} $ be the initial number of nuclei, then $ N_{1}=N_{0}{{e}^{-\lambda t_{1}}} $ and $ N_{2}=N_{0}{{e}^{-\lambda t_{2}}} $
$ \therefore $ Number of nuclei decayed $ =N_{1}-N_{2} $ $ =N_{0}({{e}^{-\lambda t_{1}}}-{{e}^{-\lambda t_{2}}})=\frac{A_{0}}{\lambda }({{e}^{-\lambda t_{1}}}-{{e}^{-\lambda t_{2}}}) $ $ =\frac{A_{1}-A_{2}}{\lambda }=(.A_{1}-A_{2})\tau . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें